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We consider the flow of an incompressible viscous Newtonian fluid under the effect of surface- 
tension forces, within a singly connected cylindrical region which has a smooth free boundary. 
The problem is solved by means of a quasi-stationary Stokes approximation [I], which was 
first developed in [2], and has been applied to the sintering of porous materials [3], the 
flow of thin films [4, 5], and geophysical problems [6]. The relaxation of small perturba- 
tions of a circular cylinder is analyzed in [7]. An analogy is drawn in [9] between the 
equations of the theory of elasticity and the equations of hydrodynamics in the Stokes ap- 
proximation [8]. This method is used in [10-12] to describe plane flow under the effect 
of capillary forces. 

The method we employ here [13] is similar to that of [14, 15]. We express the pressure 
in the form of an expansion in a complete system of orthonormal harmonic functions; we cal- 
culate the velocity field on the boundary; and we show how the behavior of "hole" perturba- 
tions varies qualitatively with the depth-to-width ratio of the hole. 

I. Consider the quasi-stationary Stokes approximation [i] in the case of the plane 
flow of an incompressible viscous fluid driven by surface-tension forces, in a bounded reg- 
ion g with a free boundary 7. The equations of motion and continuity and the boundary condi- 
tions then have the form 

a~p=~ = o; ( 1 .  i )  

a~u~ = 0 ( x ~  g); (1.2) 

P=~n~ --- --an~a~no (x ~ ?); (1.3) 

where P~n~ =~ --pS=~-~ ~(O~u~+ O~v~) is the Newtonian stress tensor, v~ and p are the fluid 

velocity and pressure, ~ and o are the coefficients of dynamic viscosity and surface tension, 
which are assumed constant, and n~ is the vector of the outer normal to the boundary. Repeat- 
ed subscripts indicate summation. 

The law of evolution of the boundary is defined by the fact that the normal velocity V 
of the boundary is equal to the normal component of the fluid velocity, i.e., 

If the stress tensor is given in the form 

2 
P~ =--5~0w~ + 0~ (1.4) 

(~ is the Airy function in the theory of elasticity), Eq. (i.i) is fulfilled identically. 
The boundary condition (1.3) can be written as 

D~(O~--on~) = O, x ~ ?  (1.5) 

(ID~ ~ n~a~--n~O~ is the tensor operator of differentiation along the tangent to the boundary, 
dual to the operator a X V). Integration of (1.5) yields 
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O~q~ = on~, x ~ y, ( i. 6)  

The additive constant which commonly appears in the right-hand side of (1.6) can be eliminat- 
ed by substituting ~-~-C~x~, , which does not alter (1.4). 

From ( 1 . 4 )  we have 

According to (i.i) and (1.2), p is a harmonic function, and consequently ~ is bihar- 
monic. 

2. Consider an arbitrary function E which is harmonic in g, Taking the scalar prod- 
uct and vector product of (1.6) and 

(1.7), we obtain 

where (I)g = S-lJfdS,e ( i )v = Z- ' f /d I  
S and ~ are the area and perimeter of the region. 

oI/(2S). This result can be found in [8]. 

2 xz 2 in (2.1) yields Setting ~ ---- x i -  

na,~ , and then integrating over the boundary ~. using 

<pE>g = ~-~ < ~>v; ( 2.1 ) 

(V9 • V~)g  = O, ( 2 . 2 )  

are the mean values over the region and its boundary, and 

When ~ = i (2.1) becomes (P)g = 

(x1029 -- x,201~ >g = O. (2.3) 

We further have from (1.6) 

<V~>g -" 0. (2.4) 

Introducing in g a complete system of orthonormal harmonic functions {Z~}~ which obey the 

orthogonality condition [16] (EkE~)g = 6~ , we obtain from (2.1) the following expression 

for the pressure: 

p ---- <p>g~ Eh <E~>v. ( 2 . 5 )  
h=O 

The series converges because the system of functions by applying the Gram-Sc~idt orthogonali- 
zation process [17] to a complete but non-orthogonal system of real functions harmonic in g; 
thus 

{X~}k~=o = (l ,  x i, x2; . . . ;  Rez  a, Imz~; . . , } ,  z = x  i + ix,,. 

Then 

i aii ' "' ai,~-i%i-- (%i>g ] 
( 2 . 6 )  

where 

I 

all �9 �9 �9 all I 

tall -'- a~l 
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Inserting (2.6) in (2.5) yields 

C h - -  . 

a n  a ~ , ~ - i  <%h>v-- <%h>g } 

(2.7) 

From [19] we have 

where 

( 2 . 8 )  

( 0 ~ ,  0 2 )  = ( R e O ,  I m O ) ,  d O  = Hdz, H = p + io,  
o ) =  ~(a2vl  - -  a~v2). ( 2 . 9 )  

The function E is analytic, since the Cauchy-Riemann conditions d1~ = --a~, a~ = a,p are 

fulfilled identically by the equations of motion. If we reduce this complex function to its 
real part and find the function ~ from (2.9), we obtain 

(l) ---: <p>g Z + h = l  [ a l l  . . .  at~,h_lAn[] ( 2 . 1 0 )  

Here 

X n + l  
An ---- [(n + I)/2] + I Z <%n+l>g; M~n--1 = Z~; ~2n = -- iz~; 

G 0 and ~0 are arbitrary constants (the first is complex and the second is real). 
to determine r we require that the momentum of the system should be zero, i.e., 

Then, on the basis of (2.4) and (2.8), 

( 0  >g = O. 

In order 
<v=>g = O. 

(2.11) 

We assume that the origin coincides with the center of inertia, i.e., 

(x=)g = O. ( 2 . 1 2 )  

Since d(x=)g/dt  = (u=)g = O, if (2.12) holds initially, it will also continue to hold sub- 

sequently. 

To determine m 0, we require that the angular momentum of the system should be zero, 
i.e., (vlx2--v2x1>g =0. We then obtain from (2.3) and (2.8) 

Im <Oz>g = O. 

Using (2.11) and (2.13) to find the constants ~0 and m0, we finally obtain for (2.10) 

( [a 1 a1 i,1 
O=<p>g z+ ~o, �9 . . . . . .  , 

h=[ a l  1 ,  . .ah,~_lB~l / 

(2.13) 

(2.14) 

660 



zz 

Fig. 1 

where 

B~ -= ([(n + t)/2] + 1)-:<• - -  < ] ( / l + l ) g  - -  

--iz Im <• >g/ 

/ <Zz )g) - ~ (7~,~)gz. 

Separating real-valued and imaginary parts of ~ and utilizing (1.6), 
distribution velocity at the boundary 

(2.8), we obtain the 

The normal velocity of the boundary defines its law of evolution, i.e., 

V = ~ (~ - -  ~h@t3), x ~ ?. ( 2 . i 5 )  

3. Consider a small perturbation of the circular cylinder boundary, given by 

r = • +h(% t) ; we then have from (2.14) and (2.15) 

o o  

Oh c~ X a--/- ~ 2~-R I k /exp (ik(~) hh, 

2. ' I  

f de exp (-- ikq~). hh = ~-~ 
0 

( 3 . 1 )  

in agreement with [7]. According tb (3.1), a small boundary perturbation of characteristic 
width ~ << R and amplitude H << 6 has a characteristic decay time �9 ~ ~6/o. 

Let now consider a large amplitude perturbation in the shape of "hole" (Fig. i). By 
symmetry, the pressure must be an even function with respect to x2, i.e., p(xl, --x2) = 
p(xl, x2) We introduce a space of two-variable harmonic functions which are even with res- 
pect to the second argument, and choose in it a complete system of functions of the form 
%~= r ~ cos (n~) (r and ~ are polar coordinates in the x:, x 2 plane). Since the width ~ is 

small, (%m%~)g = N~6m~/2(n+l) Then the complete system of orthonormal harmonic functions 

in that space is 

E~ = ]/-~n + O(r/B) ~ cos (n@. ( 3 . 2 )  

Inserting (3.2) in (2.5) and summing the series yields 

P----~ aB2 E B z g)~ , ( 3 . 3 )  

whence, using (2.12), we have 

[( ) R',R ] H z 2 i n _ _ (  n 5 
q 0 = o  1 - - ~ -  N -N +--~ --.~)R " (3.4) 
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In spite of the logarithm, (3.4) is a single-valued analytic function in g, because the 
boundary perturbation constitutes a branch cut. If we insert (3.4) in (2.16), we find that 
the normal velocity of the cut edges V = o/(2~) (in the zero approximation with respect to 
the small parameter 6/H). The edges close up after a time ~ = ~6/o. Although capillary 
forces generally tend to flatten the boundary perturbations, in this case they produce the 
opposite effect. In acting to reduce the length of the cut, the capillary forces.gener@te 
a flow of scale H in the region. The velocities along x I and x 2 have the scales H and 6, 
respectively. If we equate the work of surface-tension forces with the rate of energy dis- 
sipation by viscous forces, we find that olI~_--~(H/H)~H ~ or H~'6~__--o/p ; this conforms 

to the rigorous result we obtained before. 

At the time limit 6 + 0, the boundary curvature at the point x I = R--H, x~ = 0 becomes 

infinite. According to (3.3), however, this does not give rise to a singularity in the pres- 
sure field at the point. As in the case of a collapsing circular capillary [20], both the 
capillary and the viscous forces increase with the curvature; they counteract each other, 
and the pressure thus remains finite. 
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